Cross-Bridge Group Ensembles Describing Cooperativity in Thermodynamically Consistent Way

نویسندگان

  • Mari Kalda
  • Pearu Peterson
  • Marko Vendelin
  • L. Michel Espinoza-Fonseca
چکیده

The aim of this work is to incorporate cooperativity into Huxley-type cross-bridge model in thermodynamically consistent way. While the Huxley-type models assume that cross-bridges act independently from each other, we take into account that each cross-bridge is influenced by its neighbors and cooperativity is induced by tropomyosin movement. For that, we introduce ensembles of cross-bridge groups connected by elastic tropomyosin. By taking into account that the mechanical displacement of tropomyosin induces free energy change of the cross-bridge group ensemble, we develop the formalism for thermodynamically consistent description of the cooperativity in muscle contraction. An example model was composed to test the approach. The model parameters were found by optimization from the linear relation between oxygen consumption and stress-strain area as well as experimentally measured stress dynamics of rat trabecula. We have found a good agreement between the optimized model solution and experimental data. Simulations also showed that it is possible to study cooperativity with the approach developed in this work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of energy consumption in cardiac muscle: analysis of isometric contractions.

The well-known linear relationship between oxygen consumption and force-length area or the force-time integral is analyzed here for isometric contractions. The analysis, which is based on a biochemical model that couples calcium kinetics with cross-bridge cycling, indicates that the change in the number of force-generating cross bridges with the change in the sarcomere length depends on the for...

متن کامل

AHEART Mar. 45/3

Landesberg, Amir, and Samuel Sideman. Regulation of energy consumption in cardiac muscle: analysis of isometric contractions. Am. J. Physiol. 276 (Heart Circ. Physiol. 45): H998–H1011, 1999.—The well-known linear relationship between oxygen consumption and force-length area or the force-time integral is analyzed here for isometric contractions. The analysis, which is based on a biochemical mode...

متن کامل

The interplay between cooperativity and diversity in model threshold ensembles.

The interplay between cooperativity and diversity is crucial for biological ensembles because single molecule experiments show a significant degree of heterogeneity and also for artificial nanostructures because of the high individual variability characteristic of nanoscale units. We study the cross-effects between cooperativity and diversity in model threshold ensembles composed of individuall...

متن کامل

Nonlinear cross-bridge elasticity and post-power-stroke events in fast skeletal muscle actomyosin.

Generation of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge...

متن کامل

Sarcomere Lattice Geometry Influences Cooperative Myosin Binding in Muscle

In muscle, force emerges from myosin binding with actin (forming a cross-bridge). This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca(2+) activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015